
Exam 1 - Definitions and Basic Theorems

One of the difficuliies in preparing for an exam where there will be a lot of proof problems is knowing what
you’re allowed to cite and what you actually have to demonstrate. Below I’ll try to summarize the most
basic notions underlying what we’ve studied so far. These notions you will be allowed to cite in the course
of carrying out your proofs. Furthermore, I’ll split these notions into two categories: basic definitions and
basic theorems.

The basic definitions should be committed to memory. In so doing be sure to commit my definitions to
memory, retaining exactly the same wording. For example, I defined the rank of a matrix as the dimension
of its column space. We later proved that the rank of a matrix is equal to number of pivots in a row echelon
form of the matrix. If you try to use ”the rank of a matrix is the number of pivots in a row echelon form
of the matrix” as the definition of rank on an exam problem, you will lose points.

The basic theorems will be a subset of the theorems, propositions, lemmas, corollaries that we have proved
in class. These will be statements that you can cite without proof in your solutions to exam problems. You
need not memorize these statements as I will list them on the final page of the exam and you can cite them
by number in your solutions. In your preparations for the exam you should try to see how you carry out
proof problems using only these statements (rather than other results in the text or lecture).

1. Basic Definitions

Definition 1.1. A field is a set F with two operations defined; addition and multiplication, which we
shall denote, respectively,by ⊕ and ⊗ (just so you resist the temptation to think purely in terms of the real
numbers). These two operations are required to satisfy

(1) α⊗ β = β ⊗ α for all α, β ∈ F (commutativity of multiplication);
(2) α⊕ (β ⊕ γ) = (α⊕ β)⊕ γ for all α, β, γ ∈ F (associativity of addition);
(3) α⊗ β = β ⊗ α for all α, β ∈ F (commutativity of multiplication)
(4) α⊗ (β ⊗ γ) = (α⊗ β)⊗ γ for all α, β, γ ∈ F (associativity of multiplication);
(5) α⊗ (β ⊕ γ) = (α⊗ β)⊕ (α⊗ γ) for all α, β, γ ∈ F (distributivity of multiplication over addition);
(6) There exists an element 0F of F such that α+ 0F = α for all α ∈ F (additive identity element);
(7) For each element α ∈ F there is an element −α ∈ F such that α⊕ (−α) = 0F (existence of additive

inverses);
(8) There exists an element 1F ∈ F such that 1⊗ α = α for all α ∈ F (multiplicative identity element);
(9) For each α 6= 0F in F there is an element α−1 ∈ F such that α⊗ α−1 = 1F.

Definition 1.2. Let F be a field, and let V be a set upon which two operations are defined

(i) vector addition: a rule for combining two elements of V to get another element of V ;
(ii) scalar multiplication: a rule for taking an element of F and an element of V and producing an

element of V .

V is a vector space over F if the following 8 properties are satisfied:

(1) u+ v = v + u for all elements u, v ∈ V (commutativity of vector addition);
(2) (u+ v) + w = u+ (v + w) for all elements u, v, w ∈ V (associativity of vector addition);
(3) There exists a vector 0V such that v + 0V = v for all v ∈ V ;
(4) For each vector v, there exists a vector −v with the property that v + (−v) = 0V ;
(5) α (βv) = (αβ) · v for all α, β ∈ F and all v ∈ V (associativity of scalar multiplication)
(6) (α+ β) v = (αv) + (βv) for all α, β ∈ F and all v ∈ V (distributivity of scalar addition w.r.t. scalar

multiplication)
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(7) α (u+ v) = (αu+ βv) for all α ∈ F and for all u, v ∈ V (distributivity of vector addition w.r.t.
scalar multiplications);

(8) 1F · v = v for all vectors v ∈ V (scalar mulitplication by 1 is trivial).

Definition 1.3. We say that a set S is closed under an operation * if the outcome of applying the
operation * to elements of S is another element of S.

Definition 1.4. Let V be a vector space over a field F and let U be a subset of the elements of V . We say
that U is a subspace of V if U is closed under the operations of scalar multiplicaition and vector addition:
In other words, U is a subspace if

(1) (u ∈ U and α ∈ F) ⇒ αu ∈ U

(2) u1, u2 ∈ U ⇒ u1 + u2 ∈ U
Definition 1.5. Let {v1, . . . , vk} be a set of vectors in a vector space V . Then the set

spanF (v1, . . . , vk) := {α1v1 + · · ·+ αkvk | α1, . . . , αk ∈ F}
(where the coefficients α1, . . . , αk vary over all possible element of F) is called the span of the vectors
{v1, . . . , vn}.
Definition 1.6. The subspace spanF (v1, . . . , vk) is the subspace generated by vectors v1, . . . , vk. A
subspace S is said to be finitely generated whenever there exists a finite set of vectors {v1, . . . , vk} such
that S = spanF (v1, . . . , vk).

Definition 1.7. A set of vectors v1, . . . , vk is said to be linearly dependent if the vectors satisfy an
equation of the form

(1) α1v1 + · · ·+ αkvk = 0

with at least one coefficient αi 6= 0. An equation of the form (1) (with at least one non-zero coefficient) is
a called a dependence relation (amongst the vectors v1, . . . , vk).

Definition 1.8. A set of vectors v1, . . . , vk is said to be linearly independent if the only way of satisfying

α1v1 + · · ·+ αkvk = 0

is to take all the coefficients a1, . . . , ak equal to 0F .

Definition 1.9. The common cardinality of any linearly independent set of generators for a subspace S is
called the dimension of S.

Definition 1.10. A basis for a subspace S is a linearly independent set of generators for S.

Definition 1.11. Let F be a field. An n×m matrix over F is an ordered list of n elements of Fm.

Definition 1.12. The row space RowSp (A) of an n×m matrix A ∈Matn,m (F) is the subspace of Fm

that is generated by the n (row-) vectors of the matrix. The column space ColSp (A) of an n×m matrix
A is the subspace of Fn generated by the column vectors of A.

Definition 1.13. v = [α1, . . . , αn] be an element of F. The pivot of v is the first (following the natural
ordering of the list entries) αi that is not equal to 0F. If αi is the pivot of v = [α1, . . . , αi, . . . , αn]. then i
is the pivot position of v.

Definition 1.14. A matrix A = [v1, . . . , vn] is in row echelon form, if the pivot position of vi is less
than the pivot position of vj whenever i < j.

Definition 1.15. Let B = [v1, . . . , vm] be a basis for a vector space V and let v ∈ V . The coordinate
vector vB of v with respect to B is the ordered list of coefficients [a1, . . . , am] corresponding to the
expansion of v with respect to the basis B :

v = a1v1 + · · ·+ amvm ⇐⇒ vB = [a1, . . . , am] ∈ Fn .

Definition 1.16. Let B = [v1, . . . , vm] be a basis for a vector space V over a field F and let [u1, u2, . . . , un]
be an ordered list of n vectors in V . To this data we can attach an n×m matrix A with entries in F. The
entries of the ith row of this matrix (1 ≤ i ≤ n) are taken to coincide with the entries of coordinate vector
of the the ith vector ui with respect to the basis B.
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Definition 1.17. The rank of a linear system (or of its associated coefficient matrix) is the dimension of
the column space of its coefficient matrix.1

Definition 1.18. Let A is the coefficient matrix for a n×m linear system

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2
...

an1x1 + an2x2 + · · ·+ anmxm = bn

and let b is the inhomogeneous part of the same system. The augmented matrix for this system is the
n× (m+ 1) matrix

[A | b] ≡

 a11 · · · a1m b1
...

. . .
...

...
an1 · · · anm bn


Definition 1.19. Let p0 be an element of a vector space V and let S be subspace of V . The hyperplane
through p0 generated by S is the set

Hp0,S = {v ∈ V | v = p0 + s ; s ∈ S}

Definition 1.20. Let A be an n×m matrix over F, thought of as a arrangement of nm elements of F into
a rectangular array with n rows and m columns. mathbfA is in reduced row echelon form if

(i) A is in row echelon form;
(ii) Each pivot of A is equal to 1F;
(iii) The entries above and below any pivot are all equal to 0F.

1The column space of a matrix is, of course, just the span of its column vectors.
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2. Basic Theorems

Proposition 2.1. The zero vector 0V of a vector space is unique.

Proposition 2.2. Let V be a vector space over a field F. Then 0F · v = 0V for all v ∈ V .

Proposition 2.3. If S is a subspace of a vector space V , then 0V ∈ S.

Proposition 2.4. A subset S of a vector space V over a field F is a subspace if and only if every linear
combination of the form αv + βu with α, β ∈ F , v, u ∈ S is in S.

Proposition 2.5. span (v1, . . . vk+1) = span (v1, . . . , vk) if and only vk+1 ∈ span (v1, . . . , vk).

Theorem 2.6. Let S be a subspace of a vector space V over a field F. Suppose S is generated by n vectors
v1, . . . , vn. Let {w1, . . . , wm} be a set of m vectors in S with m > n. Then the vectors {w1, . . . , wm} are
linearly dependent.

Corollary 2.7. Suppose {v1, . . . , vn} and {w1, . . . , wm} are two bases for a subspace S. Then n = m.

Proposition 2.8. Let L = {v1, . . . , vn} be an ordered list of generating vectors for a subspace S of a vector
space V over a field F. The following three elementary operations on the list L do not change the subspace
generated by the vectors in L.

(i) replacing a generating vector vi with a non-zero scalar multiple of itself: vi → λvi
(ii) replaciing a generating vector vj with its sum with a scalar multiple of another generator: vj →

vj + λvi
(iii) interchanging two vectors: vi ←→ vj

Proposition 2.9. Let [v1, . . . , vn] be an n×m matrix. If an elementary operation (see Corollary 4.2 and
Definition 4.3) is applied to this list of vectors, the new list of vectors is matrix that has the same row space.
More generally, if M is a matrix and M′ is a matrix obtained from M by applying a sequence of elementary
row operations to the (row) vectors of M (and the intermediary matrices). Then

RowSp (M′) = RowSp (M)

Proposition 2.10. Let A be an n×m matrix. Then there exists a sequence of elementary operations that
converts A to a matrix in row echelon form.

Theorem 2.11. Let V be an m-dimensional vector space with basis B = [v1, . . . , vm] and A be the coefficient
matrix of a set of n non-zero vectors [u1, . . . , un] with respect to B. Suppose that the row vectors r1, . . . , rn ∈
Fm of A are in row echelon form. Then the vectors u1, . . . , un are linearly independent.

Theorem 2.12. Let A be the coefficient matrix expressing a list [u1, . . . , un] of vectors in V in terms of
their coefficients with respect to a basis B = [v1, . . . , vm] of V . Then the following statements hold.

(i) There exists a matrix A′ row equivalent to A, such that either A′ = 0 or there is a uniquely
determined positive integer k (between 1 and n) such that the first k rows of A′ are in row echelon
form and the remaining rows are all zero.

(ii) The vectors [w1, . . . , wk] corresponding to the first k rows of A′ form a basis for span (u1, . . . , un).
(iii) The original set of vectors are linearly independent if and only if n = k.

Lemma 2.13. If {v1, . . . , vm} is a linearly dependent set and if {v1, . . . , vm−1} is a linearly independent
set then vm can be expressed as a linear combination of v1, . . . , vm−1.

Theorem 2.14. Every finitely generated vector space has a basis.

Theorem 2.15. Let V = spanF (v1, . . . , vm) be a finitely generated vector space. Then a basis for V can be
selected from among the set of generators {v1, . . . , vm}. In other words, any set of generators for a finitely
generated vector space V contains a basis for V .
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Lemma 2.16. Suppose A is an n×m matrix with column vectors [c1, c2, . . . , cm] and x is a n× 1 column

vector with entries


x1
x2
...
xm

. Then

Ax = x1c1 + x2c2 + · · ·+ xmcm .

Theorem 2.17. Consider a n×m linear system with coefficient matrix A and inhomogenous part b ∈ Fn.
For each i between 1 and n, let ci denote the element of Fn formed by writing the entries in the ith column
of A in order (from top to bottom). Then the linear system has a solution if and only if either of the
following two conditions is satisfied.

(i) b ∈ span (c1, . . . , cm)
(ii) dim span (c1, . . . , cm) = dim span (c1, . . . , cm,b)

Proposition 2.18. Let x be a solution of an n×m linear system S (A,b), and let S be the solution set of
the corresponding homogeneous linear system S (A,0). Then the solution set of S (A,b) coincides with the
hyperplane through x generated by S.

Theorem 2.19. The reduced row echelon form of an n×m matrix A is unique.

Proposition 2.20. If [B | c] is a matrix in reduced row echelon form obtained from [A | b] by a sequence
of elementary row operations, then the solutions to the linear system corresponding to [A | b] will be the
same as the solutions to the linear system corresponding to [B | c].

Theorem 2.21. Let A be an n×m matrix, then the column rank of A equals its row rank.


